Home > Ground Freezing > Computer Simulation of Ground Freezing under Oil Tank

Computer Simulation of Ground Freezing under Oil Tank

During the construction of buildings and structures in the Far North, permafrost thawing in the immediate vicinity results in ground settlement and deformation of foundations. This issue is particularly topical for pipelines and tanks containing petroleum products with elevated temperatures. The most effective method for providing foundation bed stability is by establishing control over the ground temperature regime through the operation of seasonal or year-round cooling devices. It is impossible to formulate an accurate plan for the collocation of cooling devices or assess ground freezing potential without computer simulation.

 

To predict the soil temperature regime for passive refrigeration under an oil tank, it is necessary to use specialized software — Frost 3D Universal.

 

In order to create a computer model according to the geometric magnitudes of the tank and system of cooling devices, a 90х90х33 m computational domain is created. The geological and lithological structure of the soils in the considered domain – sand, peat, loam and sandy loam – is reconstructed on the basis of geotechnical boreholes by means of interpolation.

 

Soil bed under oil tank, section of geological horizons according to wells and system of thermosiphons

2D contour map of the tank bed (left) and section view of the tank and cooling devices (right), both constructed according to the data from the geotechnical boreholes

 

The surfaces on which boundary conditions are subsequently specified are determined on the reconstructed 3D geometry of the simulation area.

 

: 3D simulation area with cooling devices and reconstructed soil morphology under oil tank

Reconstructed 3D model for simulation with cooling devices and foundation bed under oil tank

 
 

The 3D simulation model is discretized into an irregular hexahedral computational mesh.

 

Computational mesh for modeling of area with oil tank

Discretized 3D simulation area

 

For different soil layers such as sand, peat, loam and sandy loam, the following thermophysical properties are specified: volumetric heat capacity of soil in thawed and frozen states, heat conductivity of soil in thawed and frozen states, moisture content of soil, freezing point of water in the ground, and an empirical parameter in the equation that approximates the quantity of ice content for given temperatures.

 

Heat exchange with the air is specified on the upper boundary of the computational domain by means of the heat exchange coefficient and changes in air temperature over time. To consider the influence of snow cover on the heat exchange between soil and air, the change of snow cover thickness over time is specified.

 

Boundary conditions for computation of convection in soils

Specification of boundary conditions for convective heat exchange

 

Physical and thermal properties of ground

Specification of thermophysical properties for ground

Dependence of air temperature on time

Export of air temperature dependence on time

 

Seasonal dependence of snow cover thickness

Specification of dependence: snow cover thickness on temperature

 

The temperature of the tank bed and the coefficient of heat exchange of the tank bed with the soil are specified for the ground bed area where the oil tank is located.

 

A constant temperature equal to -1.7 oC is specified on the lower boundary of the computational domain, and on the side boundary – heat flow is equal to zero.

 

Heat flow on the evaporating section of the system of cooling devices is automatically calculated on the basis of form factors of the cooling system.

 

The initial temperature distribution is specified in the form of dependence over depth.

 

Distribution of temperatures in ground for freezing simulation

Specification of initial temperature distribution in soil

 

After all the input data is entered, the simulation for the required period of time is conducted. The resulting predictions for the soil temperature regime are shown below as color distribution of sections of the simulation area at different moments in time.

 

Temperature distribution from flat loop thermosyphon

Simulation results of soil temperature regime after 90 days – longitudinal section of simulation area along the plane of cooling device installation

 

Visualization of ground thermal stabilization under oil tank

Simulation result of soil temperature distribution after 1 year

 

Forecast of temperature regime during construction on frozen ground in the Far North

Result of temperature regime simulation in the form of temperature isolines along the longitudinal section of the simulation area

 

On conclusion of the simulation process, design engineers obtain full information regarding the dynamics of a 3D temperature field in the ground during specified time intervals.

 

FROST 3D UNIVERSAL

Software package for thermotechnical computations applied during the construction of:

 

  • Oil and gas pipelines
  • Oil tanks
  • Foundations and footings
  • Buildings and structures
  • Roads and railways

Learn More →

We received a good project result which is better than our initial suggestions. We would surely run further projects with this company.

Klaus Dillinger
CEO and Co-Founder
QuintSysteme GmbH. Austria

 

Read other testimonials

Call us:
+7 495 772 54 07

Examples of projects: